DDM (Aachen): Unterschied zwischen den Versionen

Aus hi-lona
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „{{Modulbeschreibung |Kurzbezeichnung=DDM (Aachen) |Name-DE=Data Driven Medicine |Name-EN=Data Driven Medicine |Beschreibung-EN=Data play an important role in m…“)
 
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:
|Beschreibung-EN=Data play an important role in medicine: Intensive care relies on monitors presenting and analysing real-time patient data, medical imaging has become a domain of massive data processing, diagnostics rely on laboratory data, and the importance of data is ever increasing: Wearable sensors, mobile communication devices and respective apps will produce data streams, which support preventive measures in healthy individuals or allow screening as a basis for data-based prevention of diseases. Last but not least: molecular biology (e.g. by gene sequencing and gene expression analysis) introduces new biomarkers, which enable new minimally-invasive diagnostics and approaches to tailoring treatments based on individual characteristics of patients (precision medicine) - which would never be possible without sophisticated processing of huge amounts of data. Medical decision making in general will be markedly influenced by data processing and data analytics. Thus, we can expect data driven medicine to gain momentum in the nearer future. This course offers a project-oriented, multidisciplinary introduction to the basics of data driven medicine. Orientation, fundamental concepts, and methodological approaches are provided by lectures. In addition, the participants will also form small interdisciplinary teams including students of computer science as well as medical students in order to plan and implement an own project, which targets prediction or decision support generated from medical data.
|Beschreibung-EN=Data play an important role in medicine: Intensive care relies on monitors presenting and analysing real-time patient data, medical imaging has become a domain of massive data processing, diagnostics rely on laboratory data, and the importance of data is ever increasing: Wearable sensors, mobile communication devices and respective apps will produce data streams, which support preventive measures in healthy individuals or allow screening as a basis for data-based prevention of diseases. Last but not least: molecular biology (e.g. by gene sequencing and gene expression analysis) introduces new biomarkers, which enable new minimally-invasive diagnostics and approaches to tailoring treatments based on individual characteristics of patients (precision medicine) - which would never be possible without sophisticated processing of huge amounts of data. Medical decision making in general will be markedly influenced by data processing and data analytics. Thus, we can expect data driven medicine to gain momentum in the nearer future. This course offers a project-oriented, multidisciplinary introduction to the basics of data driven medicine. Orientation, fundamental concepts, and methodological approaches are provided by lectures. In addition, the participants will also form small interdisciplinary teams including students of computer science as well as medical students in order to plan and implement an own project, which targets prediction or decision support generated from medical data.
|Studiengang=AF Inf. MSc (Aachen)
|Studiengang=AF Inf. MSc (Aachen)
|Lernziel im Modul=LZ-PIN 34002, LZ-PIN 34021, LZ-PIN 34023, LZ-PIN 34026, LZ-PIN 34031, LZ-PIN 34032, LZ-PIN 34033, LZ-PIN 34035
}}
}}

Version vom 24. November 2020, 13:07 Uhr

Short Name DDM (Aachen)
Name (De) Data Driven Medicine
Name (En) Data Driven Medicine
Description (De)
Description (En) Data play an important role in medicine: Intensive care relies on monitors presenting and analysing real-time patient data, medical imaging has become a domain of massive data processing, diagnostics rely on laboratory data, and the importance of data is ever increasing: Wearable sensors, mobile communication devices and respective apps will produce data streams, which support preventive measures in healthy individuals or allow screening as a basis for data-based prevention of diseases. Last but not least: molecular biology (e.g. by gene sequencing and gene expression analysis) introduces new biomarkers, which enable new minimally-invasive diagnostics and approaches to tailoring treatments based on individual characteristics of patients (precision medicine) - which would never be possible without sophisticated processing of huge amounts of data. Medical decision making in general will be markedly influenced by data processing and data analytics. Thus, we can expect data driven medicine to gain momentum in the nearer future. This course offers a project-oriented, multidisciplinary introduction to the basics of data driven medicine. Orientation, fundamental concepts, and methodological approaches are provided by lectures. In addition, the participants will also form small interdisciplinary teams including students of computer science as well as medical students in order to plan and implement an own project, which targets prediction or decision support generated from medical data.
Study Program(s) AF Inf. MSc (Aachen)
LO of the Module LZ-PIN 34002, LZ-PIN 34021, LZ-PIN 34023, LZ-PIN 34026, LZ-PIN 34031, LZ-PIN 34032, LZ-PIN 34033, LZ-PIN 34035
external LO
Previous

Learning Objectives of the Module


LO-PIN LO-Catalogue LO-ID Description(De/En) Niveau 1 Niveau 2 Niveau 3 Niveau 4 Role
LZ-PIN 34002 BMHI-Version-4 0.1.1 Die Studierenden können die gesetzlichen Grundlagen der Medizinischen Dokumentation, auch DSGVO und IT-Sicherheitsgesetz nennen & erklären
The legal basis of medical documentation, including DSGVO and Cyber Security Act. name & explain
LZ-PIN 34021 BMHI-Version-4 1.1.1 Die Studierenden können den Bedarf Medizinischer Dokumentation an Beispielen erläutern begründen
The need for medical documentation using examples clarify justify
LZ-PIN 34023 BMHI-Version-4 1.1.3 Die Studierenden können Vor- und Nachteile der elektronischen Dokumentation, deren Unterschiede zur Papierdokumentation und die Probleme von Medienbrüchen nennen
Advantages and disadvantages of electronic documentation, its differences to paper documentation and the problems of media gaps name
LZ-PIN 34026 BMHI-Version-4 1.1.6 Die Studierenden können Aufgaben und Funktion der unterschiedlichen Arten elektronischer Patientenakten (ärztlich initiiert, einrichtungsbezogen oder einrichtungsübergreifend) sowie der elektronischen Gesundheitsakte (vom Patienten initiiert) benennen
Tasks and functions of the different types of electronic patient records (initiated by a physician, institution-related or cross-institutional) and the electronic health record (initiated by the patient) name
LZ-PIN 34031 BMHI-Version-4 1.3.1 Die Studierenden können Diagnosen mittels aktueller Version des ICD-GM (Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme, xxRevision German Modification) für den stationären und ambulanten Bereich erklären anwenden
Diagnoses using the current version of the ICD-GM (International Statistical Classification of Diseases and Related Health Problems, xxRevision German Modification) for inpatient and outpatient treatment. explain apply
LZ-PIN 34032 BMHI-Version-4 1.3.2 Die Studierenden können die Kodierung von Maßnahmen, Eingriffen und Prozeduren mittels OPS  anwenden
Coding of steps, interventions and procedures using OPS apply
LZ-PIN 34033 BMHI-Version-4 1.3.3 Die Studierenden können das DRG-System, die zur Ermittlung einer DRG erforderlichen Informationen und Werkzeuge, sowie die mit dem DRG-System verbundenen Kennzahlen, auch Entgeltsystem und Zusatzerlöse anwenden
The principles of the DRG-system, the information and tools required to assign a DRG, and the key figures relevant for the DRG-system, including payment system and additional revenues. apply
LZ-PIN 34035 BMHI-Version-4 1.4 Die Studierenden können Nomenklaturen, (kontrollierte) Vokabulare, Terminologien, Ontologien und Taxonomien im BMHI, z.B. SNOMED CT, LOINC nennen & erläutern
Nomenclatures, (controlled) vocabularies, terminologies, ontologies and taxonomies in BMHI, e.g. SNOMED CT, LOINC name & clarify


Go to the Administation of Module Descriptions